• You are welcome to ERC!
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 119次   下载 92 本文二维码信息
码上扫一扫!
分享到: 微信 更多
3-D Simulation Study on Seismic Response of Bridge Piles in Landslide
Hou Chaoping,Liu Qi
Author NameAffiliation
Hou Chaoping College of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China 
Liu Qi School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;Key Laboratory of High Speed Railway Engineering, Ministry of Education, PRC, Chengdu 610031, China 
摘要:
The anti-slide support structure is widely used in the anti-seismic reinforcement of bridge foundations, but related experimental research was processing slowly. Based on the prototype of the Jiuzhaigou bridge at the Chengdu-Lanzhou Railway, a 3-D simulation model was established on the basis of the shaking table model test, and the rationality of the dynamic analysis model was verified by indicators such as the bending moment of the bridge piles, peak soil pressure, and PGA amplification factors. The results show that the inertia force of the bridge pier has an important influence on the deformation of the pile foundation. The bending moment and shearing force are larger in lateral bridge piles, and the maximum value is near the pile top. The PGA amplification factor is stronger in the back of the rear anti-slide piles and so is it in front of the bridge pier, and the soil is prone to slip and damage. The bedrock is rigid and the dynamic response is maintained at a low level. The anti-slide piles in the rear row play a major role in the anti-seismic reinforcement design, and the anti-slide piles in the front row can be used as an auxiliary support structure.
关键词:  Anti-slide pile  Pier Foundation  Shaking table test  3-D simulation  Earthquake response
DOI:
分类号:
基金项目:This research supported by the Railway's Research and Development Project of the Ministry of Railways of the People's Republic of China (Grant No. Z2012-061).
3-D Simulation Study on Seismic Response of Bridge Piles in Landslide
Hou Chaoping,Liu Qi
Abstract:
The anti-slide support structure is widely used in the anti-seismic reinforcement of bridge foundations, but related experimental research was processing slowly. Based on the prototype of the Jiuzhaigou bridge at the Chengdu-Lanzhou Railway, a 3-D simulation model was established on the basis of the shaking table model test, and the rationality of the dynamic analysis model was verified by indicators such as the bending moment of the bridge piles, peak soil pressure, and PGA amplification factors. The results show that the inertia force of the bridge pier has an important influence on the deformation of the pile foundation. The bending moment and shearing force are larger in lateral bridge piles, and the maximum value is near the pile top. The PGA amplification factor is stronger in the back of the rear anti-slide piles and so is it in front of the bridge pier, and the soil is prone to slip and damage. The bedrock is rigid and the dynamic response is maintained at a low level. The anti-slide piles in the rear row play a major role in the anti-seismic reinforcement design, and the anti-slide piles in the front row can be used as an auxiliary support structure.
Key words:  Anti-slide pile  Pier Foundation  Shaking table test  3-D simulation  Earthquake response